NAME:

CODE

Physics Laboratory practical Total marks [12.6]

Title: Determination of coefficient of viscosity of oil

Determination of coefficient of viscosity of fluids

Ball Drop Experiment

The measurement involves determining the velocity of a falling sphere through a column of fluid of unknown viscosity. This is accomplished by dropping a sphere through a measured distance of fluid and measuring how long it takes to traverse the distance.

Materials

- Thermometer
- Ball bearings of different diameters
- Stopwatch
- Meter ruler
- Paper towel
- Magnet
- Oil

Theoretical aspects

Consider a spherical ball bearing of radius *r* and density ρ_s falling through a column of viscous fluid of coefficient of viscosity η and density ρ_f as

illustrated in the figure below. The coefficient of viscosity is a measure of the degree of internal resistance to flow and shear.

Figure 1: showing a sphere of radius *r* falling through a column of fluid of density ρ_f . A and B marks the distance travelled by the sphere at terminal velocity v_t .

According to Newton's second law:

$$Net \ Force = ma$$
$$ma = W - (F_u + F_v) \tag{1}$$

Where *m* is the mass of the sphere,

W=mg, is the weight of the sphere (ball bearing) $F_u = \frac{4}{3}\pi r^3 \rho_f g$ is the upthrust = weight of the fluid displaced $F_v = 6 \pi r \eta v$ is the viscous force (of a sphere of radius *r*) proportional to the velocity *v* of the ball (Stoke's Law). Initially the ball has some downward acceleration until the sphere acquires terminal velocity v_t ($v_t = \frac{s}{t}$ where *s* is the distance travelled in time *t*), when there is no more acceleration and hence the net force is zero. Equation (1) becomes

$$mg = F_u + F_v$$

$$\frac{4}{3}\pi r^3 \rho_s g = \frac{4}{3}\pi r^3 \rho_f g + 6\pi r \eta v_t$$
(2)

Or
$$v_t = \frac{2}{9} \frac{r^2}{\eta} g \left(\rho_s - \rho_f \right)$$
 (3)

Note that *s* is the distance between A and B and *t* is the time the ball takes to fall between A and B.

Equation (3) can be modified to:

$$v_t = \frac{1}{18} \frac{d^2}{\eta} g \left(\rho_s - \rho_f \right) \tag{4}$$

Where

d = diameter of sphere (=2r) ρ_s = density of sphere = m/V = (mass of sphere/volume of sphere) ρ_f = density of fluid g = acceleration of gravity = 9.81 m/s² v_t = Terminal Velocity = s/t = (distance sphere falls)/(time of it takes to fall)

Procedure

Proceed as follows.

- Measure the vertical distance *s* between points A and B marked on the cylindrical tubes.
- Drop one of the ball bearings into the fluid (ensuring that the ball bearing does not touch the wall of the cylinder during its motion between A and B)
- 3. Measure the time *t* taken by the sphere to travel the distance *s* between A and B and record it in the provided table.
- Without removing the ball bearing, repeat steps 2 and 3 above using other bearings of the same diameter to have three values of time.
- 5. Repeat steps 2 to 4 for the other 4 sizes of ball bearings.

Results and analysis

Note the following: $\rho_f = 871.4 \text{ kg/m}^3$ $\rho_s = 7717 \text{ kg/m}^3$ s = 0.4 m (distance between A and B)

Calculate the average time, d^2 and v_t for each set of ball bearings, complete Table 1.

Ball diameter			Diameter squared	Time taken to fall distance <i>l</i>				Terminal velocity
#	d (mm)	d (m)	d ² (m ²)	t ₁ (s)	t ₂ (s)	t ₃ (s)	Average time (s)	v_t (m/s)
1								
2								
3								
4								

- 1. Plot a graph of v_t vs d^2 , [5.2]
- Use the graph to determine the viscosity of the oil with the appropriate units. [5]

MARKING SCHEME Solution

Completed table

Note the following: $ho_f = 871.4 \text{ kg/m}^3$ $ho_s = 7717 \text{ kg/m}^3$

Temperature before T_b :	
T =	[0.15]
Distance l	
$l \approx 0.500 \text{ m}$	[0.25]
Drawing a sketchof measurement	[0.75]
Temperature before T_a :	
$T_a =$	[0.15]

Points for the measurements and calculations

Table III-1

#	<u>d</u> (mm)	d (m)	d² (m ²)	t ₁ (s)	t ₂ (s)	(s)	Average time (s)	<i>v</i> _t (m/s)
1	0,25	0,05	0,05	0,25	0,25	0,25	0,05	0,1
2	0,25	0,05	0,05	0,25	0,25	0,25	0,05	0,1
3	0,25	0,05	0,05	0,25	0,25	0,25	0,05	0,1
4	0,25	0,05	0,05	0,25	0,25	0,25	0,05	0,1

Subtraction (per column) 0.2 if out of range

d (mm)	Range d (mm)	d _{min} (mm)	d _{max} (mm)
4,50	0,4	4,30	4,70
5,00	0,4	4,80	5,20
6,00	0,4	5,80	6,20
7,00	0,4	6,80	7,20

III-2 Plot of v_t vs. d^2

[3.0]

Marks allocation:

i)	x and y axis labelling	[1.0]
	(for each axis Quantity (0.25) & Unit	(0.25))
ii)	Scale of the graph	[1.0]
	0.5 for each axis (uniform & size)	
iii)	Plotting of points (0.1 for each)	[0.4]
iv)	Drawing straight line best of fit	[0.6]

- i. Mark the points on the line that are used[0.5]ii. Calculation of the slope[0.5]
- iii. Determining the correct unit [0.5]

III-4 Derive and show analytical expression for *C* [1.0] i.

i) Determination of coefficient of viscosity.

From

 $v_t = \frac{1}{18} \frac{d^2}{\eta} g \left(\rho_s - \rho_f \right)$

$$slope = \frac{g}{18} \frac{(\rho_s - \rho_f)}{\eta}$$
 or $slope = \frac{c}{\eta}$ [0.5]

- Calculation of the viscosity [0.5]
- Determining the correct unit [0.5]

$$\eta = \frac{g}{18} \frac{(\rho_s - \rho_f)}{slope} \rightarrow \frac{\left[\frac{m}{s^2}\right] * \left[\frac{kg}{m^3}\right]}{\left[\frac{m}{s}\right]} = \left[\frac{Ns}{m^2}\right] = Pa.S$$