Zoeken
verfijn de resultaten
Het creëren van steunpunten in touwen om te verplaatsen in (een)touw
én
In een touw met verschillende knopen omhoog klimmen om op één van de twee kasten van verschillende hoogte naast het touw te komen.
In veel praktische situaties ligt de volgorde van bewerkingen voor de hand. Bij formele problemen zoals 25 - 3 x 5 = ... dienen de afgesproken voorrangsregels gekend te worden. Meestal wordt de regel gebruikt dat vermenigvuldigen en delen voorgaan op optellen en aftrekken. Onderling bestaat er geen voorrang tussen vermenigvuldigen en delen. Evenmin tussen optellen en aftrekken.
De telwoorden staan in een vaste volgorde, waarin elk getal een vaste plaats heeft. Die volgorde kan gebruikt worden om de plaats van iets in een rij aan te geven. Bijvoorbeeld:
- het derde kind in de rij;
- het vierde huis in de straat;
- de tweede prijs.
In dagelijkse betaalsituaties kun je meestal volstaan met schattingen.
Bijvoorbeeld: Ik heb 3 pakken koffie van € 3,78, 1 doos wasmiddel van € 7,98 en 4 pakken lucifers van € 1,18 in mijn mandje liggen. Heb ik aan € 10,- genoeg om te betalen? Het gebruik van pinnen maakt deze toepassing echter steeds minder noodzakelijk. Daardoor verschuift het schatten naar het begroten van uitgaven in relatie tot inkomsten, zodat (te veel) rood staan wordt voorkomen.
Als je moet controleren of een berekening met de rekenmachine klopt, hoef je bijna nooit precies te rekenen:
- 1250 + 16, moet iets meer dan 1250 zijn;
- 4516 + 375, moet iets minder dan 4900 zijn;
- 391,36 - 16,752 zal ongeveer 375 zijn.
Rekenen doe je precies of ongeveer, schriftelijk of uit het hoofd. In het algemeen zijn de volgende vier rekenvormen te onderscheiden:
- precies: uit het hoofd, dat wil zeggen op basis van kennis van rekenfeiten (zoals tafels) of onder gebruikmaking van een hoofdrekenstrategie (zoals wanneer 8x25 via 4x100 wordt uitgerekend). In dat laatste geval kan ook gebruik worden gemaakt van passende tussennotaties. Zie verder kerndoel 28.
- precies: schriftelijk, dat wil zeggen op basis van vaste rekenprocedures die stap voor stap schriftelijk worden uitgevoerd. Dit betreft behalve de cijferprocedures waarbij met cijfers of positiewaarden gewerkt wordt, ook de kolomsgewijze procedures waarbij met getalwaarden wordt gewerkt. Zie verder kerndoel 30.
- ongeveer, dat wil zeggen door de getallen in een situatie af te ronden tot makkelijk hanteerbare getallen die gebruikt kunnen worden om via een eenvoudige hoofdrekenstrategie tot een benadering van de uitkomst te komen. Al naar gelang de situatie kan sprake zijn van tussennotaties. Zie verder kerndoel 29.
- precies: op de rekenmachine, hierbij wordt een oplossingsstrategie bedacht die vervolgens met behulp van de rekenmachine wordt uitgevoerd. Soms worden alle rekenhandelingen op de machine gedaan, soms gebeurt dit slechts ten dele, namelijk voor de meest bewerkelijke handelingen.
Wanneer wordt welke rekenvorm aangeboden?
Precies leren rekenen staat in ons leerplan voorop. In eerste instantie gaat de aandacht volledig uit naar hoofdrekenen. Aanvankelijk betreft dit helemaal uit het hoofd rekenen (zoals bij het optellen en aftrekken tot 20 en bij de tafels), naderhand wordt veel aandacht besteed aan het gebruik van passende tussennotaties bij hoofdrekenen. Geleidelijk aan leren de leerlingen zulke notaties steeds verkorter te gebruiken, totdat de tussennotaties uiteindelijk grotendeels verdwijnen.
In tweede instantie gaat de aandacht uit naar de tweede vorm van precies rekenen, dat wil zeggen het schriftelijk rekenen waarbij gebruik wordt gemaakt van standaardprocedures. Deze komen grotendeels voort uit de hoofdrekenstrategieën die eerder aan de orde zijn gesteld.
Naast het schriftelijk rekenen gaat het schattend rekenen vervolgens steeds meer een rol spelen. De uitkomsten van het precies rekenen kunnen er mee gecontroleerd worden. Maar ook speelt schattend rekenen een belangrijke rol in situaties waarin een precieze uitkomst niet nodig of niet mogelijk is.
Bijvoorbeeld: je koopt 4 broden van € 2,48. Heb je genoeg aan een tientje om te betalen? En: hoeveel auto's staan er ongeveer in een file van 3 kilometer?
Wordt het precies en ongeveer rekenen grotendeels beheerst, dan wordt de rekenmachine geïntroduceerd. Hiermee ontstaat de mogelijkheid om allerlei omslachtige berekeningen snel, efficiënt en foutloos uit te voeren. Wel is het belangrijk dat leerlingen uitkomsten kunnen controleren met behulp van een schatstrategie.